102 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как проверить фотоэлемент мультиметром

Содержание

ПРОВЕРКА ФОТОДИОДОВ

Для оценки качества фотодиода собирают схему, приведенную на рис. 1, снимают вольтамперные характеристики проверяемого образца и определяют его основные параметры, то есть темновой ток и интегральную чувствительность.

Рис. 1. Схема соединения источника питания и измерительных приборов с фотодиодом для снятия его вольт-амперной характеристики

В качестве источника света используют 75-ваттную лампу накаливания, свет от которой собирают в параллельный пучок с помощью линзы. Постоянство светового потока обеспечивают питанием лампы от стабилизированного источника переменного напряжения.

В радиолюбительской практике проверку исправности фотодиода упрощают, сводя ее к внешнему осмотру и измерению омметром прямого и обратного сопротивлений затемненного и освещенного фотодиода.

Процесс упрощенного испытания заключается в следующем:

1) присоединяют испытываемый диод к гнездам «Общ» и « Ω X 100» омметра (рис. 2, а) и замечают показания омметра при освещении диода настольной лампой мощностью 60-100 Вт (расстояние между фотодиодом и баллоном лампы принимают равным 60—80 мм) и затемнении его путем прикрытия окна диода пальцем;

2) меняют местами выводы фотодиода (рис. 2, б) и снова измеряют сопротивления при затемнении и освещении испытываемого образца.

Рис. 2. Схемы соединения фотодиода с омметром при упрощенном испытании фотодиодов

Если в первом случае сопротивление фотодиода, равное, например, при его освещении двум-трем десяткам килоом, увеличивается при затемнении до 150 —200 кОм, а во втором случае (рис, 2, 6) — возрастает от 1500 Ом (при освещении) до 1530 — 1560 Ом (при затемнении), то испытываемый образец считают исправным.

В случае отсутствия омметра фотодиод проверяют с помощью микроамперметра и гальванического элемента, например типа 332 или 373.

Испытание включает такие операции:

1) собирают схему, приведенную на рис. 3, и, затемняя фотодиод, замечают показание микроамперметра;

Рис. 3. Схема соединения источника питания с полупроводниковым и измерительным приборами при испытании фотодиода с помощью микроамперметра

2) подносят к окну для засветки фотодиода настольную лампу мощностью 60-150 Вт и замечают второе показание прибора; если последнее превосходит первое в 5 — 15 раз (например, изменяется с 5 — 8 до 50 -75 мкА), то испытываемый фотодиод считают исправным.

И, наконец, самый простой способ проверки фотодиода. Присоединяют к испытываемому образцу тестер ТТ-1, предварительно подготовленный для измерения постоянных токов до 0,2 мA, и наблюдают за стрелкой прибора при изменении освещенности.

Так как собственная э, д. с, фотодиода в неосвещенном состоянии практически равна нулю и внешний Источник напряжения отсутствует, то стрелка тестера вначале не отклоняется.

Затем подносят фотодиод к включенной настольной лампе мощностью 60 — 100 Вт. Если испытываемый образец исправен и расстояние между ним и лампой составляет 20 — 25 см, то под действием света э. д. с. фотодиода увеличивается и ток в цепи возрастает до 50 — 100 мкА.

Чем лучше испытываемый фотодиод, меньше расстояние между ним и лампой и больше освещенность, тем на большую величину возрастает фототок при переходе от неосвещенного состояния к освещенному.

В заключение несколько слов о проверке фотодиодов на «ползучесть»

В некоторых фотодиодах наблюдается нежелательное явление, проявляющееся в хаотическом изменении тока через электронно-дырочный переход, несмотря на отсутствие внешних воздействий. Это непостоянство обратного тока фотодиода получило название «ползучести».

Проверку фотодиода на «ползучесть» осуществляют путем подачи на испытываемый образец в запирающем направлении постоянного напряжения, равного 9 В (рис. 4), и наблюдения в течение некоторого времени за величиной обратного тока.

Рис. 4. Схема соединения фотодиода с источником питания и микроамперметром при испытании фотодиода на «ползучесть».

Если стрелка микроамперметра во время этой проверки остается неподвижной, то испытываемый образец считают выдержавшим испытание на «ползучесть».

Фотодатчики и их применение

Какие бывают фотодатчики

В различных электронных устройствах, устройствах домашней и промышленной автоматики, различных радиолюбительских конструкциях фотодатчики используются очень широко. Кто хоть раз разбирал старую компьютерную мышь, как ее называли «комовскую», еще с шариком внутри, наверняка видел колесики с прорезями, крутящиеся в щели фотодатчиков.

Подобные фотодатчики называются фотопрерывателями – прерывают поток света. С одной стороны такого датчика находится источник – светодиод, как правило, инфракрасный (ИК), с другой фототранзистор (если быть точнее, то два фототранзистора, в некоторых моделях фотодиода, чтобы определить еще и направление вращения). При вращении колесика с прорезями на выходе фотодатчика получаются электрические импульсы, что является информацией об угловом положении этого самого колесика. Такие устройства называются энкодерами. Причем энкодер может быть просто контактным, вспомните колесико у современной мышки!

Фотопрерыватели используются не только в «мышках» а и в других устройствах, например, датчиках частоты вращения какого-либо механизма. В этом случае применяется одинарный фотодатчик, ведь направление вращения определять не требуется.

Если из каких-то соображений, чаще всего для ремонта, залезть в другие устройства электронной техники, то фотодатчики можно обнаружить в принтерах, сканерах и копирах, в приводах CD дисководов, в DVD плеерах, кассетных видеомагнитофонах, видеокамерах и в другой аппаратуре.

Читать еще:  Подогреватель жидкостной на авто б у разборка

Так какие же бывают фотодатчики, и что они из себя представляют? Просто посмотрим, не вникая в физику полупроводников, не разбираясь в формулах и не произнося непонятных слов (рекомбинация, рассасывание неосновных носителей), что называется «на пальцах», как эти фотодатчики работают.

Рисунок 1. Фотопрерыватель

Фоторезистор

С ним все понятно. Как обычный постоянный резистор имеет омическое сопротивление, направление подключения в схеме роли не играет. Только в отличие от постоянного резистора меняет сопротивление под воздействием света: при освещенности оно уменьшается в несколько раз. Количество этих «раз» зависит от модели фоторезистора, в первую очередь от его темнового сопротивления.

Конструктивно фоторезисторы представляют собой металлический корпус со стеклянным окошком, сквозь которое видна сероватого цвета пластинка с зигзагообразной дорожкой. Более поздние модели выполнялись в пластмассовом корпусе с прозрачным верхом.

Быстродействие фоторезисторов невелико, поэтому работать они могут лишь на очень низких частотах. Поэтому в новых разработках они почти не применяются. Но случается, что в процессе ремонта старой техники с ними встретиться придется.

Чтобы проверить исправность фоторезистора достаточно проверить его сопротивление с помощью мультиметра. При отсутствии освещения сопротивление должно быть большим, к примеру, у фоторезистора СФ3-1 темновое сопротивление по справочным данным 30МОм. Если его осветить, то сопротивление упадет до нескольких КОм. Внешний вид фоторезистора показан на рисунке 2.

Рисунок 2. Фоторезистор СФ3-1

Фотодиоды

Очень похожи на обычный выпрямительный диод, если бы не свойство реагировать на свет. Если его «прозванивать» тестером, лучше несовременным стрелочным, то при отсутствии освещения результаты будут те же, как в случае измерения обычного диода: в прямом направлении прибор покажет маленькое сопротивление, а в обратном стрелка прибора почти не сдвинется с места.

Говорят, что диод включен в обратном направлении (этот момент следует запомнить), поэтому ток через него не идет. Но, если в таком включении фотодиод засветить лампочкой, то стрелка резко устремится к нулевой отметке. Такой режим работы фотодиода называется фотодиодным.

Еще у фотодиода есть фотогальванический режим работы: при попадании на него света он, как солнечная батарея, вырабатывает слабенькое напряжение, которое, если усилить, можно использовать в качестве полезного сигнала. Но, чаще фотодиод используется в фотодиодном режиме.

Фотодиоды старой конструкции по внешнему виду представляют металлический цилиндрик с двумя выводами. С другой стороны находится стеклянная линза. Современные фотодиоды имеют корпус просто из прозрачной пластмассы, в точности такой же как и светодиоды.

Рис. 2. Фотодиоды

Фототранзисторы

По внешнему виду бывают просто неотличимы от светодиодов, тот же корпус из прозрачной пластмассы или цилиндрик со стекляшкой в торце, а из него два вывода — коллектор и эмиттер. Базовый вывод фототранзистору вроде как не нужен, ведь входным сигналом для него является световой поток.

Хотя, некоторые фототранзисторы вывод базы все же имеют, что позволяет кроме света управлять транзистором еще и электрическим способом. Такое можно встретить у некоторых транзисторных оптронов, например АОТ128 и импортных 4N35, — по сути функциональных аналогов. Между базой и эмиттером фототранзистора включают резистор, чтоб несколько прикрыть фототранзистор, как показано на рисунке 4.

Рисунок 3. Фототранзистор

У нашего оптрона обычно «вешают» 10 — 100КОм, а вот у импортного «аналога» около 1МОм. Если поставить даже 100КОм, то он работать не будет, транзистор просто наглухо закрыт.

Как проверить фототранзистор

Фототранзистор достаточно просто проверить тестером, даже если у него нет вывода базы. При подключении омметра в любой полярности сопротивление участка коллектор – эмиттер достаточно большое, поскольку транзистор закрыт. Когда на линзу попадет свет достаточной интенсивности и спектра, то омметр покажет маленькое сопротивление – транзистор открылся, если, конечно, удалось угадать полярность подключения тестера. По сути дела такое поведение напоминает обычный транзистор, только тот открывается электрическим сигналом, а этот световым потоком. Кроме интенсивности светового потока немалую роль играет его спектральный состав. Про особенности проверки транзисторов смотрите здесь.

Спектр света

Обычно фотодатчики настроены на определенную длину волны светового излучения. Если это излучение инфракрасного диапазона, то такой датчик плохо реагирует на синий и зеленый светодиоды, достаточно хорошо на красный, лампу накаливания и само собой на инфракрасный. Также нехорошо воспринимает свет от люминесцентных ламп. Поэтому причиной плохой работы фотодатчика может быть просто неподходящий спектр источника света.

Выше было написано, как прозвонить фотодиод и фототранзистор. Тут следует обратить внимание на такую вроде бы мелочь, как тип измерительного прибора. У современного цифрового мультиметра в режиме прозвонки полупроводников плюс находится там же, где и при измерении постоянного напряжения, т.е. на красном проводе.

Результатом измерения будет падение напряжения в милливольтах на p-n переходе в прямом направлении. Как правило, это цифры в пределах 500 — 600, что зависит не только от типа полупроводникового прибора, но еще и от температуры. При увеличении температуры эта цифра уменьшается на 2 на каждый градус Цельсия, что обусловлено температурным коэффициентом сопротивления ТКС.

При пользовании стрелочным тестером надо помнить, что в режиме измерения сопротивлений плюсовой вывод находится на «минусе» в режиме измерения напряжений. При таких проверках освещать фотодатчики лучше лампой накаливания с близкого расстояния.

Сопряжение фотодатчика с микроконтроллером

В последнее время многие радиолюбители увлеклись конструированием роботов. Чаще всего это что-то такое на вид примитивное, вроде коробки с батарейками на колесиках, но жутко умное: все слышит, видит, препятствия объезжает. Вот видит он все как раз за счет фототранзистров или фотодиодов, а может даже и фоторезисторов.

Тут все происходит очень просто. Если это фоторезистор, достаточно подключить его, как указано на схеме, а в случае с фототранзистором или фотодиодом, чтобы не перепутать полярность предварительно «прозвонить» их, как было рассказано выше. Особенно полезно эту операцию проделать, если детали не новые, убедиться в их пригодности. Подключение разных фотодатчиков к микроконтроллеру показано на рисунке 4.

Рисунок 4. Схемы подключения фотодатчиков к микроконтроллеру

Измерение освещенности

Фотодиоды и фототранзисторы имеют малую чувствительность, высокую нелинейность и весьма узкий спектр. Основное применение этих фотоприборов – работа в ключевом режиме: включено – выключено. Поэтому создание измерителей освещенности на них достаточно проблематично, хотя раньше во всех аналоговых измерителях освещенности применялись именно эти фотодатчики.

Но к счастью нанотехнология на месте не стоит, а идет вперед семимильными шагами. Для измерения освещенности «там у них» создали специализированную микросхему TSL230R, представляющую собой программируемый преобразователь освещенность – частота.

Читать еще:  Как поменять лампочку противотуманки на матизе

Внешне устройство представляет собой микросхему в корпусе DIP8 из прозрачной пластмассы. Все сигналы входные и выходные по уровню совместимы с TTL — CMOS логикой, что позволяет легко сопрягать преобразователь с любым микроконтроллером.

С помощью внешних сигналов можно изменять чувствительность фотодиода и шкалу выходного сигнала соответственно 1, 10, 100 и 2, 10, и 100 раз. Зависимость частоты выходного сигнала от освещенности линейная, в пределах от долей герца до 1МГц. Настройки шкалы и чувствительности выполняются подачей логических уровней всего на 4 входа.

Микросхема может вводиться в режим микро потребления (5мкА) для чего есть отдельный вывод, хотя и в рабочем режиме не особенно прожорлива. При напряжении питания 2,7…5,5В потребляемый ток не более 2мА. Для работы микросхемы не требуется никакой внешней обвязки, разве что блокировочный конденсатор по питанию.

По сути, достаточно подключить к микросхеме частотомер и получать показания освещенности, ну, видимо, в каких-то УЕ. В случае же применения микроконтроллера ориентируясь на частоту выходного сигнала можно управлять освещенностью в помещении, или просто по принципу «включить – выключить».

TSL230R не единственный измеритель освещенности. Еще более совершенными являются датчики фирмы Maxim MAX44007-MAX44009. Габариты их меньше, чем у TSL230R, энергопотребление таково, как у других датчиков в спящем режиме. Основное назначение таких датчиков освещенности – применение в приборах с батарейным питанием.

Фотодатчики управляют освещением

Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, некоторые из которых мы рассмотрим в следующей статье.

Как проверить фотоэлемент мультиметром

Для оценки качества фотодиода собирают схему, приведенную на рис. 1, снимают вольтамперные характеристики проверяемого образца и определяют его основные параметры, то есть темновой ток и интегральную чувствительность.

Рис. 1. Схема соединения источника питания и измерительных приборов с фотодиодом для снятия его вольт-амперной характеристики

В качестве источника света используют 75-ваттную лампу накаливания, свет от которой собирают в параллельный пучок с помощью линзы. Постоянство светового потока обеспечивают питанием лампы от стабилизированного источника переменного напряжения.

В радиолюбительской практике проверку исправности фотодиода упрощают, сводя ее к внешнему осмотру и измерению омметром прямого и обратного сопротивлений затемненного и освещенного фотодиода.

Процесс упрощенного испытания заключается в следующем:

1) присоединяют испытываемый диод к гнездам «Общ» и « Ω X 100» омметра (рис. 2, а) и замечают показания омметра при освещении диода настольной лампой мощностью 60-100 Вт (расстояние между фотодиодом и баллоном лампы принимают равным 60—80 мм) и затемнении его путем прикрытия окна диода пальцем;

2) меняют местами выводы фотодиода (рис. 2, б) и снова измеряют сопротивления при затемнении и освещении испытываемого образца.

Рис. 2. Схемы соединения фотодиода с омметром при упрощенном испытании фотодиодов

Если в первом случае сопротивление фотодиода, равное, например, при его освещении двум-трем десяткам килоом, увеличивается при затемнении до 150 —200 кОм, а во втором случае (рис, 2, 6) — возрастает от 1500 Ом (при освещении) до 1530 — 1560 Ом (при затемнении), то испытываемый образец считают исправным.

В случае отсутствия омметра фотодиод проверяют с помощью микроамперметра и гальванического элемента, например типа 332 или 373.

Испытание включает такие операции:

1) собирают схему, приведенную на рис. 3, и, затемняя фотодиод, замечают показание микроамперметра;

Рис. 3. Схема соединения источника питания с полупроводниковым и измерительным приборами при испытании фотодиода с помощью микроамперметра

2) подносят к окну для засветки фотодиода настольную лампу мощностью 60-150 Вт и замечают второе показание прибора; если последнее превосходит первое в 5 — 15 раз (например, изменяется с 5 — 8 до 50 -75 мкА), то испытываемый фотодиод считают исправным.

И, наконец, самый простой способ проверки фотодиода. Присоединяют к испытываемому образцу тестер ТТ-1, предварительно подготовленный для измерения постоянных токов до 0,2 мA, и наблюдают за стрелкой прибора при изменении освещенности.

Так как собственная э, д. с, фотодиода в неосвещенном состоянии практически равна нулю и внешний Источник напряжения отсутствует, то стрелка тестера вначале не отклоняется.

Затем подносят фотодиод к включенной настольной лампе мощностью 60 — 100 Вт. Если испытываемый образец исправен и расстояние между ним и лампой составляет 20 — 25 см, то под действием света э. д. с. фотодиода увеличивается и ток в цепи возрастает до 50 — 100 мкА.

Чем лучше испытываемый фотодиод, меньше расстояние между ним и лампой и больше освещенность, тем на большую величину возрастает фототок при переходе от неосвещенного состояния к освещенному.

В заключение несколько слов о проверке фотодиодов на «ползучесть»

В некоторых фотодиодах наблюдается нежелательное явление, проявляющееся в хаотическом изменении тока через электронно-дырочный переход, несмотря на отсутствие внешних воздействий. Это непостоянство обратного тока фотодиода получило название «ползучести».

Проверку фотодиода на «ползучесть» осуществляют путем подачи на испытываемый образец в запирающем направлении постоянного напряжения, равного 9 В (рис. 4), и наблюдения в течение некоторого времени за величиной обратного тока.

Рис. 4. Схема соединения фотодиода с источником питания и микроамперметром при испытании фотодиода на «ползучесть».

Если стрелка микроамперметра во время этой проверки остается неподвижной, то испытываемый образец считают выдержавшим испытание на «ползучесть».

Фоточувствительные приборы используются в разных отраслях электроники и радиотехники. Все больше сейчас применяется фототранзистор, у которого более простой принцип работы, нежели у фотодиодов.

Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.

Фото — фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор:

  1. Охранные системы (в основном, используются ИК-фототранзисторы);
  2. Кодеры;
  3. Компьютерные логические системы управления;
  4. Фотореле;
  5. Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
  6. Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:

  1. Могут производить больший ток, чем фотодиоды;
  2. Эти радиодетали сравнительно очень дешевые;
  3. Могут обеспечить мгновенный высокий ток на выходе;
  4. Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.
Читать еще:  Новинки китайских авто 2018 в россии

При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:

  1. Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
  2. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
  3. Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Принцип работы

Фототранзистор работает так же, как и транзистор, где ток направляется к коллектору, ключевым отличием является то, что в данном приборе, электроток контролируется только двумя активными контактами.

Фото — простой фототранзистор

В простой схеме, при условии, что ничего не подключено к фототранзистору, базовый ток регулируется при помощи определенного оптического излучения, которое определяет коллектор. Электроток попадает на полупроводник только после резистора. Таким образом, напряжение на приборе будет двигаться от высокого к низкому, в зависимости от уровня оптического излучения. Для усиления сигнала можно подключить устройство к специальному оборудованию. Выход фототранзистора зависит от длины волны падающего света. Этот полупроводник реагирует на свет в широком диапазоне волн в зависимости от спектра работы. Выход фототранзистора определяется площадью открытой переходной коллектор-базы и постоянного тока усиления транзистора.

Фототранзистор бывает разного типа действия, про это говорят основные схемы включения устройства. Виды прибора:

  1. Оптический изолятор (напоминает по принципу трансформатор, у которого входы заблокированы при помощи электрических контактов);
  2. Фотореле;
  3. Датчики. Применяются в охранных системах. Это активные приборы, излучающие свет. При формировании и выделении определенного импульса, полупроводниковый прибор сразу же рассчитывает силу его возвращения. Если сигнал не вернулся или вернулся с другой частотой, то срабатывает сигнализация (как в охранных системах ИК).

Маркировки и основные параметры

Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.

Фото — обозначение транзисторов

При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки). Обратите внимание, цоколевка показана также, как у обычных транзисторов.

Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.

Основные характеристики фототранзисторов LTR 4206E, ФТ 1К и ИК-SFH 305-2/3:

Фототранзистор своими руками: ltr 4206e, фт 1к, arduino

Фоточувствительные приборы используются в разных отраслях электроники и радиотехники. Все больше сейчас применяется фототранзистор, у которого более простой принцип работы, нежели у фотодиодов.

Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.

Фото — фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор:

  1. Охранные системы (в основном, используются ИК-фототранзисторы);
  2. Кодеры;
  3. Компьютерные логические системы управления;
  4. Фотореле;
  5. Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
  6. Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:

  1. Могут производить больший ток, чем фотодиоды;
  2. Эти радиодетали сравнительно очень дешевые;
  3. Могут обеспечить мгновенный высокий ток на выходе;
  4. Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:

  1. Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
  2. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
  3. Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Принцип работы

Фототранзистор работает так же, как и транзистор, где ток направляется к коллектору, ключевым отличием является то, что в данном приборе, электроток контролируется только двумя активными контактами.

Фото — простой фототранзистор

В простой схеме, при условии, что ничего не подключено к фототранзистору, базовый ток регулируется при помощи определенного оптического излучения, которое определяет коллектор. Электроток попадает на полупроводник только после резистора. Таким образом, напряжение на приборе будет двигаться от высокого к низкому, в зависимости от уровня оптического излучения. Для усиления сигнала можно подключить устройство к специальному оборудованию. Выход фототранзистора зависит от длины волны падающего света. Этот полупроводник реагирует на свет в широком диапазоне волн в зависимости от спектра работы. Выход фототранзистора определяется площадью открытой переходной коллектор-базы и постоянного тока усиления транзистора.

Фототранзистор бывает разного типа действия, про это говорят основные схемы включения устройства. Виды прибора:

  1. Оптический изолятор (напоминает по принципу трансформатор, у которого входы заблокированы при помощи электрических контактов);
  2. Фотореле;
  3. Датчики. Применяются в охранных системах. Это активные приборы, излучающие свет. При формировании и выделении определенного импульса, полупроводниковый прибор сразу же рассчитывает силу его возвращения. Если сигнал не вернулся или вернулся с другой частотой, то срабатывает сигнализация (как в охранных системах ИК).

Маркировки и основные параметры

Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.

Фото — обозначение транзисторов

При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки). Обратите внимание, цоколевка показана также, как у обычных транзисторов.

Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.

Основные характеристики фототранзисторов LTR 4206E, ФТ 1К и ИК-SFH 305-2/3:

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector
×
×
×
×