1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Назовите потребитель электрической энергии

Потребители электрической энергии

При проектировании системы электроснабжения потребители электроэнергии (отдельный электроприемник, группа электроприемников, цех, предприятие и др.) рассматривают в качестве электрических нагрузок.

По характеру нагрузок различают потребителей активной и реактивной мощности. Активную мощность потребляют многие термоэлектрические установки, электропечи, осветительные установки и др. Потребителями реактивной мощности являются силовые трансформаторы, электродвигатели, конденсаторные батареи и др. Как правило, эквивалентная нагрузка большинства потребителей электроэнергии является активно–индуктивной, а, следовательно, потребляется и активная, и реактивная электроэнергия.

По режиму работы отдельные электроустановки потребителей могут работать в длительном тепловом режиме (электродвигатели насосов, вентиляторов, компрессоров, конвейеров и т.п.), кратковременном тепловом режиме (электродвигатели шиберов, задвижек, шаровых кранов и т.п.) или повторно–кратковременном тепловом режиме (электродвигатели подъемно–транспортных механизмов, роботов–манипуляторов, металлорежущих станков и др.).

По величине мощности и напряжения различают потребителей электроэнергии малой, средней и большой мощности, низкого и высокого напряжения. К потребителям низкого напряжения и малой и средней мощности относят потребителей, питающихся напряжением до 1 кВ (220, 380 и 660 В) и мощностью до 100 кВт. К потребителям высокого напряжения и большой мощности относят потребителей, питающихся напряжением свыше 1 кВ (3, 6 и 10 кВ), и мощностью свыше 100 кВт, однако ряд потребителей большой мощности получает питание по сети 380–660 В.

По роду тока различают потребителей переменного тока промышленной частоты 50–60 Гц (асинхронные и синхронные двигатели, тиристорные преобразователи и др.), повышенной частоты 0,1–1 кГц (электроинструмент, высокоскоростной электропривод, шлифовальные станки и др.), высокой частоты 1–10 кГц и сверхвысокой частоты свыше 10 кГц (печи индуцированного нагрева, СВЧ–печи и др.).

По степени надежности электропитания различают потребителей первой, второй и третьей категории [1].

Электроприемники первой категории – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.

Из состава электроприемников первой категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.

Электроприемники второй категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники третьей категории – все остальные электроприемники, не относящиеся к первой и второй категориям.

Структура потребления электроэнергии в РФ основными отраслями в % от выработанной электроэнергии:

Израсходовано для собственных нужд

Израсходовано при передаче и распределении

по электрической сети общего пользования …… 8,5

Всего полезно отпущенной электроэнергии …… 85,4

Экспорт в другие страны ………………………… 5,0

Итого отпущено потребителям в стране ..………. 80,4

– сельскому хозяйству ……………………………. 6,0

– жилищно–коммунальному хозяйству ………….. 8,2

– прочим потребителям …………………………. 3,4

Главным потребителем электроэнергии является промышленность. Наиболее энергоемкими отраслями промышленности являются черная и цветная металлургия, химическая промышленность и машиностроение. В этих отраслях промышленности до 70 % электроэнергии потребляют электродвигатели. В электротехнологических установках (электропечах, электролизерах и др.) потребляется до 25–35 %. На освещение расходуется 5–10 % электроэнергии.

Графики электрических и тепловых нагрузок

Энергосистем

Для обеспечения утреннего и особенно вечернего максимума подключаются пиковые электростанции, в часы ночного провала электрической нагрузки часть турбин и соответственно котлов разгружается и несет минимальную технически допустимую нагрузку (технический минимум), часть турбин и котлов выводится в резерв.

На рис. 1.1, б показаны суточные графики электрической нагрузки энергосистемы по рабочим и выходным дням недели, а также в субботу – график промежуточный между пятницей (рабочим днем) и воскресеньем (выходным днем).

Суммарная электрическая нагрузка распределяется между электростанциями энергосистемы с учетом их маневренности, т.е. способности к работе по переменному графику нагрузки, и тепловой экономичности.

На рис. 1.2, а, б приведен характерный суточный график электри­ческой нагрузки энергосистемы в зимний и летний дни. На рис. 1.2, в показан годовой график продолжительности электрических нагрузок, который строится по суточным графикам нагрузки – зимнему и летнему, рабочего и нерабочего дней. Годовой график электрических нагрузок по продолжительности (график Росандера) описывается формулой

,

где P, Pмакс – соответственно текущее и макси­мальное значение мощности;

τ, τгод – соответственно текущее и годовое (8760 ч) время;

f – отношение минимальной и максимальной мощности годового графика нагрузки; f = Pмин / Pмакс;

f – коэффициент годовой нагрузки;

λ — показатель степени, зависящий от коэффициента годовой нагрузки; .

Рис. 1.2. Суточный график электрической нагрузки

энергоблока: а – зимний день; б – летний день; в – построение

годового графика электрических нагрузок по продолжительности

Годовое потребление электрической энергии равно площади под кривой на графике Росандера (рис. 1.2, в):

.

Тепловая энергия требуется для технологических процессов и силовых установок промышленности, для отопления и вентиляции производственных, жилых и общественных зданий, кондиционирования воздуха и бытовых нужд (горячего водоснабжения). Для производственных целей обычно требуется насыщенный пар давлением от 0,15 до 1,6 МПа. Однако чтобы уменьшить потери при транспортировке и избежать необходимости непрерывного дренирования воды из коммуникаций, с электростанции пар отпускают несколько перегретым. На отопление, вентиляцию и бытовые нужды с теплоэлектроцентрали обычно горячая вода поступает с температурой от 70 до 150 °С в городские тепловые сети и от 70 до 180 °С – в пригородные.

Различают местное и централизованное теплоснабжение. Система местного теплоснабжения обслуживает одно или несколько зданий, система централизованного – жилой или промышленный район. В системах местного теплоснабжения источниками тепла служат печи, водогрейные котлы, водонагреватели (в том числе солнечные) и т.п. В РФ наибольшее применение нашло централизованное теплоснабжение (в связи с этим термин “теплоснабжение” чаще всего употребляется применительно к системам централизованного теплоснабжения). Его основные преимущества перед местным теплоснабжением: значительное снижение расхода топлива и эксплуатационных затрат (например, за счет автоматизации котельных установок и повышения их КПД); возможность использования низкосортного топлива; уменьшение степени загрязнения воздушного бассейна и улучшение санитарного состояния населенных мест.

Читать еще:  Как прописать брелок сигнализации старлайн б9

Централизованная система теплоснабжения включает в себя источник теплоты (промышленная и районная отопительная котельная, теплоэлектроцентраль), трубопроводы для транспортирования теплоты (паровые или водяные тепловые сети) и установки потребителей, использующие теплоту для технологических или бытовых нужд и присоединяемые к сети через тепловые пункты.

Централизованное теплоснабжение с ТЭЦ в качестве источника теплоты называется теплофикацией. Последняя благодаря комбинированной выработке электроэнергии и теплоты на ТЭЦ дает существенную экономию топлива.

Теплота на бытовые нужды (горячее водоснабжение) может подаваться с водой, поступающей к потребителю из тепловой сети, и с предварительно нагретой водопроводной водой. При горячем водоснабжении, осуществляемом сетевой водой, схему называют открытой, при горячем водоснабжении предварительно нагретой водопроводной водой — закрытой схемой.

Технологические потребители являются, как правило, круглогодовыми и имеют преимущественно ровный суточный график нагрузки (нефтеперегонные заводы, нефтехимические и химические комбинаты и др.). Некоторые теплопотребляющие предприятия работают в две смены и имеют ночной спад тепловой нагрузки. Подача пара технологическим потребителям осуществляется обычно по однотрубному паропроводу надземной прокладки.

Тепловая нагрузка электростанции, определяемая расходом теплоты на производственные процессы и бытовые нужды (горячее водоснабжение), практически не зависит от наружной температуры воздуха. Однако летом эта нагрузка несколько меньше, чем зимой. В то же время промышленная и бытовая тепловые нагрузки резко изменяются в течение суток. Кроме того, среднесуточная нагрузка электростанции при использовании теплоты на бытовые нужды в конце недели и предпраздничные дни значительно выше, чем в другие рабочие дни недели. Типичные графики изменения суточной тепловой нагрузки промышленных предприятий и горячего водоснабжения жилого района показаны на рис. 1.3 и 1.4.

Отопительная тепловая нагрузка, расход теплоты на вентиляцию и кондиционирование воздуха зависят от температуры наружного воздуха и имеют сезонный характер. Расход теплоты на отопление и вентиляцию наибольший зимой и полностью отсутствует в летние месяцы; на кондиционирование воздуха теплота расходуется только летом (поэтому расширение сферы применения кондиционированного воздуха приведет к повышению эффективности теплофикации).

Для крупных городских и пригородных ТЭЦ основным видом тепловой нагрузки является отопительная, и поэтому значение τмакс. для них ниже числа часов использования максимума электрической нагрузки.

Рис. 1.3. График суточной тепловой нагрузки предприятий:

Рис. 1.4. Суточные графики изменения расхода теплоты

на бытовые нужды района:

а – в рабочие дни недели; б – по субботам.

Потребление теплоты на горячее водоснабжение является круглогодичным, однако средняя нагрузка летом снижается относительно зимней на 15–25%. График нагрузки горячего водоснабжения Qг в течение одних суток приведен на рис. 1.5 и подобен суточному графику потребления электроэнергии.

Ночью имеет место сильный спад нагрузки, затем утром – пик нагрузки, за которым следуют дневной спад примерно до среднесуточной нагрузки Qср и, наконец, вечерний пик. Суточные графики нагрузки горячего водоснабжения различны для различных дней недели. Особенно высокий вечерний пик эта нагрузка имеет в субботу.

Вопрос 4. Дайте определение термину «Потребитель электрической энергии».

Вопросы и ответы для подготовки

Электротехнического персонала к проверке знаний по электробезопасности

Вопрос 1. Дайте определение термину «электробезопасность»

Ответ. Электробезопасность – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Вопрос 2. Дайте определение термину «электроустановка».

Ответ. Электроустановками называется совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии. Электроустановки по условиям электробезопасности подразделяются на электроустановки напряжением до 1000 В и электроустановки напряжением выше 1000В.

Электроустановка здания – совокупность взаимосвязанного электрооборудования в пределах здания или помещения.

Вопрос 3. Дайте определение термину «электрооборудование».

Ответ. Электрооборудование – оборудование, предназначенное для производства, преобразования, передачи, распределения или потребления электрической энергии.

Вопрос 4. Дайте определение термину «Потребитель электрической энергии».

Ответ. Потребитель электрической энергии – предприятие, организация, учреждение, территориально обособленный цех, строительная площадка, квартира, у которых приемники электрической энергии присоединены к электрической сети и используют электрическую энергию.

Вопрос 5. Дайте определение термину «Приемник электрической энергии».

Ответ.Электроприемник – электрооборудование, преобразующее электрическую энергию в другой вид энергии для ее использования.

Вопрос 6. Как делятся электроустановки в соответствии с за­щитой их от атмосферных воздействий.

Ответ. Электроустановки могут быть отрытыми или наруж­ными, не защищенными зданием от атмосферных воздействий.

Электроустановки, защищенные только навесами, сетчаты­ми ограждениями, рассматриваются как наружные.

Закрытые или внутренние – размещены внутри здания, за­щищающего их от атмосферных воздействий.

Вопрос 7. Дайте характеристику электропомещениям.

Ответ. Электропомещениями называются помещения или отгороженные, например, сетками, части помещения, доступные только для квалифицированного обслуживающего персонала, в которых расположены электроустановки.

Сухими помещениями называются помещения, в которых относительная влажность воздуха не превышает 60%.

Влажные помещения – относительная влажность воздуха в них более 60%, но не превышает 75%.

Сырые помещения – относительная влажность воздуха в них длительно превышает 75%.

Особо сырые – относительная влажность воздуха близка к 100%;

Жаркие помещения, в них температура превышает посто­янно или периодически (более 1 суток) +35°С.

В пыльных помещениях по условиям производства выделя­ется технологическая пыль в таком количестве, что она может оседать на проводах, проникать внутрь машин и аппаратов.

В помещениях с химически активной или органической средой постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образуются отложения или плесень, разрушающие изоляцию электрооборудования.

Читать еще:  Какая толщина лакокрасочного покрытия автомобиля

Вопрос 8. Категории помещений в отношении опасности поражения людей электрическим током.

Ответ.В отношении опасности поражения людей электри­ческим током различают:

Помещения без повышенной опасности, в которых отсут­ствуют условия, создающие повышенную или особую опасность.

Помещения с повышенной опасностью, характеризуются наличием в них одного из следующих условий, создающих повы­шенную опасность:

токопроводящие полы (металлические, земляные, железо­бетонные, кирпичные и т. п.):

возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям, техноло­гическим аппаратам, с одной стороны, и к металлическим корпу­сам электрооборудования – с другой.

Особоопасные помещения, характеризуются наличием од­ного из следующих условий, создающих особую опасность: осо­бой сырости, химически активной или органической среды, од­новременно двух или более условий повышенной опасности.

Территории размещения наружных электроустановок в от­ношении опасности поражения людей электрическим током при­равниваются к особо опасным помещениям.

Вопрос 9. Как обеспечивается возможность легкого распознава­ния частей, относящихся к отдельным элементам электроустановки?

Ответ В электроустановках должна быть обеспечена воз­можность легкого распознавания частей, относящихся к отдель­ным их элементам:

простота и наглядность схем, надлежащее расположение электрооборудования, надписи, маркировка, расцветка.

Шины должны быть обозначены:

При переменном трехфазном токе: шина фазы А – желтым цветом, фазы В – зеленым, фазы С – красным, нулевая рабочая N – голубым, шина нулевая защитная – продольными полосами желтого и зеленого цветов;

При переменном однофазном токе: шина А, присоединен­ная к началу обмотки источника – желтым цветом, а шина В, присоединенная к концу обмотки, – красным.

При постоянном токе: положительная шина (+) – красным цветом отрицательная (-) – синим и нулевая рабочая М – голубым.

Вопрос 10. Как разделяются электроприемники в отноше­нии обеспечения надежности электроснабжения?

Ответ. В отношении обеспечения надежности электроснаб­жения электроприемники делятся на три категории.

Электроприемники I категории – электроприемники, пе­рерыв электроснабжения которых может повлечь за собой: опас­ность для жизни людей, повреждение дорогостоящего основного оборудования, массовый брак продукции, нарушение функцио­нирования особо важных элементов коммунального хозяйства.

Из состава электроприемников I категории выделяется осо­бая группа, бесперебойная работа которых необходима для беза­варийного останова производства с целью предотвращения, угрозы жизни людей, взрывов, пожаров и повреждения дорогостоя­щего основного оборудования.

Электроприемники I категории обеспечиваются электро­энергией от двух независимых взаимно резервирующих источ­ников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления пи­тания.

Для электроснабжения особой группы электроприемников I категории предусматривается дополнительное питание от треть­его независимого взаимно резервирующего источника питания.

Электроприемники II категории – электроприемники, пе­рерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов, на­рушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники II категории рекомендуется обеспечи­вать электроэнергией от двух независимых взаимно резервирую­щих источников питания. Перерыв в питании допустим на время, необходимое для включения резервного питания действиями де­журного персонала или выездной оперативной бригады. Возмож­но питание по одной ВЛ, одной КЛ, одного трансформатора, но время на аварийный ремонт не более суток.

Электроприемники III категории – все остальные, не под­ходящие под определения I и II категорий.

Для электроприемниковIII категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают одних суток.

Понятие о системах электроснабжения и потребителях электроэнергии. Термины и определения;

Системой электроснабжения называют совокупность взаимосвязанных электроустановок, предназначенных для обеспечения потребителей электрической энергией.

Потребителем электроэнергии (по ПУЭ) называется электроприемник или их группа, объединенные технологическим процессом и размещающиеся на определенной территории.

Пример: предприятия, организации, территориально обособленные цеха, строительные площадки, квартиры, у которых приемники электроэнергии присоединены и используют электроэнергию

Приемником электроэнергии называют устройство (аппарат, агрегат,

механизм), в котором происходит преобразование электрической энергии в

другой вид энергии для ее использования.

По технологическому назначению приемники электроэнергии классифицируются по виду энергии, в который данный электроприемник преобразует электроэнергию, а именно: электродвигатели приводов машин и механизмов, электротермические, электрохимические и электросиловые установки, установки электроосвещения, установки электростатического и электромагнитного поля и др.

Электроустановкаминазывают совокупность машин, аппаратов, линий

и вспомогательного оборудования, предназначенных для производства, пре-

образования, передачи, накопления, распределения электроэнергии и преоб-

разования ее в другие виды энергии.

Электроустановка – комплекс взаимосвязанного оборудования и сооружений. Примеры электроустановок: электрическая подстанция, линия электропередачи, распределительная подстанция, конденсаторная батарея и др.

В системе электроснабжения объектов можно выделить три вида электроустановок:

по производству электроэнергии – электрические станции;

по передаче, преобразованию и распределению электроэнергии – электрические сети и

по потреблению электроэнергии в производственных и бытовых нуждах – приемники

Электрической станцией называется предприятие, на котором вырабатывается электри-

ческая энергия. На этих станциях различные виды энергии (энергия топлива, падающей воды,

ветра, атомная и др.) с помощью электрических машин, называемых генераторами, преобразу-

ются в электрическую энергию.

В зависимости от используемого вида первичной энергии все существующие электриче-

ские станции разделяются на следующие основные группы: тепловые, гидравлические, атом-

ные, ветряные и др.

Приемником электроэнергии (электроприемником, токоприемником) называется элек-

трическая часть производственной установки, получающая электроэнергию от источника и

преобразующая ее в механическую, тепловую, химическую, световую энергию, в энергию элек-

тростатического и электромагнитного поля.

По технологическому назначению приемники электроэнергии классифицируются в зави-

симости от вида энергии, в который данный приемник преобразует электрическую энергию:

электродвигатели приводов машин и механизмов; электротермические установки; электрохи-

мические установки; установки электроосвещения; установки электростатического и электро-

магнитного поля, электрофильтры; устройства искровой обработки, устройства контроля и ис-

пытания изделий (рентгеновские аппараты, установки ультразвука и т.д.). Электроприемники

характеризуются номинальными параметрами: напряжением, током, мощностью и др.

Совокупность электроприемников производственных установок цеха, корпуса, предпри-

ятия, присоединенных с помощью электрических сетей к общему пункту электропитания, на-

Читать еще:  Установка радар детектора под капотом

Совокупность электрических станций, линий электропередачи, подстанций, тепловых

сетей и приемников, объединенных общим и непрерывным процессом выработки, преобразова-

ния, распределения тепловой и электрической энергии, называется _энергетической системой.

Единая энергетическая система (ЕЭС) объединяет энергетические системы отдельных

районов, соединяя их линиями электропередачи (ЛЭП).

Часть энергетической системы, состоящая из генераторов, распределительных уст-

ройств, повышающих и понижающих подстанций, линий электрической сети и приемников

электроэнергии, называют электроэнергетической системой.

Электрической сетью называется совокупность электроустановок для передачи и рас-

пределения электроэнергии, состоящая из подстанций и распределительных устройств, соеди-

ненных линиями электропередачи, и работающая на определенной территории.

Электрическая сеть объекта электроснабжения, называемая системой электроснабже-

ния объекта, является продолжением электрической системы. Система электроснабжения объ-

екта объединяет понижающие и преобразовательные подстанции, распределительные пункты,

электроприемники и ЛЭП.

Прием, преобразование и распределение электроэнергии происходят на подстанции –

электроустановке, состоящей из трансформаторов или иных преобразователей электроэнергии,

распределительных устройств, устройств управления, защиты, измерения и вспомогательных

Распределение поступающей электроэнергии без ее преобразования или трансформации

выполняется на распределительных подстанциях (РП).

Электрические сети подразделяют по следующим признакам.

1. Напряжение сети. Сети могут быть напряжением до 1 кВ – низковольтными, или

низкого напряжения (НН), и выше 1 кВ -высоковольтными, или высокого напряжения (ВН).

2. Род тока. Сети могут быть постоянного и переменного тока. Электрические сети

выполняются в основном по системе трехфазного переменного тока, что является наиболее це-

лесообразным, поскольку при этом может производиться трансформация электроэнергии. При

большом числе однофазных приемников от трехфазных сетей осуществляются однофазные от-

ветвления. Принятая частота переменного тока в ЕЭС России равна 50 Гц.

3. Назначение. По характеру потребителей и от назначения территории, на которой

они находятся, различают: сети в городах, сети промышленных предприятий, сети электриче-

ского транспорта, сети в сельской местности. Кроме того, имеются районные сети, предназна-

ченные для соединения крупных электрических станций и подстанций на напряжении выше 35__кВ; сети межсистемных связей, предназначенные для соединения крупных электроэнергетиче-

ских систем на напряжении 330,500 и 750 кВ. Кроме того, применяют понятия: питающие и

4. Конструктивное выполнение сетей. Линии могут быть воздушными, кабельны-

ми и токопроводами. Подстанции могут быть открытыми и закрытыми.

Для графического изображения электроэнергетических систем, а также отдельных эле-

ментов и связи между элементами используют общепринятые условные обозначения. На рис.

1.1 показаны условные обозначения основных элементов электроэнергетической системы.

Примерная схема относительно простой электроэнергетической системы приведена на

рис. 1.2. Здесь электрическая энергия, вырабатываемая на двух электростанциях различных ти-

пов: тепловой электростанции (ТЭС) и теплоэлектроцентрали (ТЭЦ), – подводится к потребите-

лям, удаленным друг от друга. Для того чтобы передать электроэнергию на расстояние, ее

предварительно преобразовывают, повышая напряжение трансформаторами. У мест потреб-

ления электроэнергии напряжение понижают до нужной величины. Из схемы можно понять,

что электроэнергия передается по воздушным линиям. Схема, приведенная на рис. 1.2, пред-

ставлена в однолинейном изображении. В действительности элементы системы, работающие на

переменном токе, имеют трехфазное исполнение. Однако для выявления структуры системы и

анализа ее работы нет необходимости в ее трехфазном изображении, вполне достаточно вос-

пользоваться ее однолинейным изображением

Электроснабжение– обеспечение потребителей электрической энергией.

Потребитель электрической энергии

Смотреть что такое “Потребитель электрической энергии” в других словарях:

потребитель электрической энергии — Юридическое или физическое лицо, осуществляющее пользование электрической энергией (мощностью). [ГОСТ 13109 97] потребитель электрической энергии Потребителем электрической энергии называется предприятие, организация, квартира, у которых… … Справочник технического переводчика

потребитель электрической энергии — Юридическое или физическое лицо, осуществляющее пользование электрической энергией (мощностью). [ГОСТ 13109 97] потребитель электрической энергии Потребителем электрической энергии называется предприятие, организация, квартира, у которых… … Справочник технического переводчика

Потребитель электрической энергии — 11.2. Потребитель электрической энергии Квартира, жилой дом, общественное здание, в которых приемники электрической энергии присоединены к электрической сети и используют электрическую энергию Источник: ТСН 23 306 99: Теплозащита и… … Словарь-справочник терминов нормативно-технической документации

Потребитель электрической энергии (тепла) — 21. Потребитель электрической энергии (тепла) Потребитель D. Verbraucher von Electroenergie E. Consumer F. Usager Предприятие, организация, территориально обособленный цех, строительная площадка, квартира, у которых приемники электрической… … Словарь-справочник терминов нормативно-технической документации

Потребитель электрической энергии с блок-станцией — потребитель с блок станцией потребитель, владеющий на праве собственности или ином законном основании объектом по производству электрической энергии (мощности) и энергопринимающими устройствами, соединенными принадлежащими этому потребителю на… … Официальная терминология

Потребитель электрической энергии (Потребитель) — English: Consumer Предприятие, организация, территориально обособленный цех, строительная площадка, квартира, у которых приемники электрической энергии присоединены к электрической сети и используют электроэнергию (по ГОСТ 19431 84) Юридическое… … Строительный словарь

ответственный потребитель электрической энергии — [Интент] Конкретизируя определение «ответственный» потребитель, отметим, что таким термином называется такой потребитель, нарушение электропитания которого может привести: − к осложнениям здоровья людей, вплоть до летального… … Справочник технического переводчика

Конечный потребитель электрической энергии — – лицо, покупающее электрическую энергию только для собственного потребления … Коммерческая электроэнергетика. Словарь-справочник

Потребители электрической энергии — лица, приобретающие электрическую энергию для собственных бытовых и (или) производственных нужд;. Источник: Федеральный закон от 26.03.2003 N 35 ФЗ (ред. от 29.06.2012) Об электроэнергетике . Потребитель (абонент) электрической энергии… … Официальная терминология

ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения — Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: